Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Contribute to GitLab
  • Sign in / Register
M
mierzala
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 8
    • Issues 8
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Darren McClinton
  • mierzala
  • Issues
  • #4

Closed
Open
Opened Feb 15, 2025 by Darren McClinton@darrenmcclinto
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library developed to assist in the advancement of reinforcement knowing algorithms. It aimed to standardize how environments are defined in AI research study, making released research more quickly reproducible [24] [144] while offering users with a simple user interface for connecting with these environments. In 2022, new advancements of Gym have actually been relocated to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for support knowing (RL) research study on computer game [147] using RL algorithms and research study generalization. Prior RL research focused mainly on enhancing agents to solve single tasks. Gym Retro offers the ability to generalize between games with comparable ideas however various appearances.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic agents at first do not have knowledge of how to even walk, but are provided the goals of finding out to move and to press the opposing representative out of the ring. [148] Through this adversarial learning process, the representatives discover how to adapt to altering conditions. When a representative is then eliminated from this virtual environment and positioned in a brand-new virtual environment with high winds, the representative braces to remain upright, suggesting it had found out how to stabilize in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competitors between representatives could produce an intelligence "arms race" that might increase an agent's capability to work even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a group of five OpenAI-curated bots utilized in the competitive five-on-five computer game Dota 2, that discover to play against human gamers at a high ability level completely through trial-and-error algorithms. Before ending up being a group of 5, the first public presentation took place at The International 2017, the annual best champion competition for the video game, where Dendi, an expert Ukrainian gamer, lost against a bot in a live one-on-one matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had discovered by playing against itself for 2 weeks of actual time, and that the learning software was a step in the instructions of producing software that can manage intricate jobs like a cosmetic surgeon. [152] [153] The system uses a kind of support knowing, as the bots discover with time by playing against themselves numerous times a day for months, and are rewarded for actions such as killing an opponent and taking map objectives. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a complete team of 5, and they had the ability to defeat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibition matches against expert players, however ended up losing both video games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the reigning world champs of the video game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' final public appearance came later on that month, where they played in 42,729 total video games in a four-day open online competition, 99.4% of those games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer reveals the obstacles of AI systems in multiplayer online fight arena (MOBA) games and how OpenAI Five has actually shown the usage of deep reinforcement knowing (DRL) representatives to attain superhuman skills in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl utilizes device learning to train a Shadow Hand, a human-like robotic hand, to manipulate physical objects. [167] It discovers entirely in simulation utilizing the exact same RL algorithms and training code as OpenAI Five. OpenAI dealt with the item orientation issue by utilizing domain randomization, a simulation technique which exposes the student to a variety of experiences instead of attempting to fit to truth. The set-up for Dactyl, aside from having motion tracking cameras, also has RGB cams to allow the robot to manipulate an approximate object by seeing it. In 2018, OpenAI revealed that the system had the ability to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl could resolve a Rubik's Cube. The robot had the ability to resolve the puzzle 60% of the time. Objects like the Rubik's Cube introduce intricate physics that is harder to model. OpenAI did this by improving the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation approach of generating progressively more difficult environments. ADR differs from manual domain randomization by not requiring a human to define randomization varieties. [169]
API

In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing new AI designs developed by OpenAI" to let developers call on it for "any English language AI job". [170] [171]
Text generation

The company has promoted generative pretrained transformers (GPT). [172]
OpenAI's original GPT design ("GPT-1")

The original paper on generative pre-training of a transformer-based language design was composed by Alec Radford and his associates, and published in preprint on OpenAI's website on June 11, 2018. [173] It revealed how a generative model of language might obtain world knowledge and procedure long-range reliances by pre-training on a diverse corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language design and the follower to OpenAI's original GPT design ("GPT-1"). GPT-2 was revealed in February 2019, with just restricted demonstrative versions at first launched to the public. The full variation of GPT-2 was not right away released due to issue about prospective abuse, hb9lc.org including applications for writing fake news. [174] Some professionals revealed uncertainty that GPT-2 presented a considerable danger.

In reaction to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to spot "neural fake news". [175] Other scientists, such as Jeremy Howard, warned of "the innovation to totally fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would muffle all other speech and be difficult to filter". [176] In November 2019, OpenAI released the total variation of the GPT-2 language design. [177] Several sites host interactive demonstrations of different circumstances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue without supervision language models to be general-purpose learners, illustrated by GPT-2 attaining state-of-the-art precision and perplexity on 7 of 8 zero-shot tasks (i.e. the design was not additional trained on any task-specific input-output examples).

The corpus it was trained on, archmageriseswiki.com called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It avoids certain concerns encoding vocabulary with word tokens by utilizing byte pair encoding. This allows representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a not being watched transformer language design and the successor to GPT-2. [182] [183] [184] OpenAI specified that the complete variation of GPT-3 contained 175 billion specifications, [184] 2 orders of magnitude bigger than the 1.5 billion [185] in the full variation of GPT-2 (although GPT-3 models with as few as 125 million criteria were likewise trained). [186]
OpenAI specified that GPT-3 prospered at certain "meta-learning" tasks and could generalize the function of a single input-output pair. The GPT-3 release paper offered examples of translation and cross-linguistic transfer knowing between English and Romanian, and in between English and German. [184]
GPT-3 significantly enhanced benchmark results over GPT-2. OpenAI warned that such scaling-up of language models might be approaching or experiencing the fundamental ability constraints of predictive language designs. [187] Pre-training GPT-3 required several thousand petaflop/s-days [b] of calculate, compared to 10s of petaflop/s-days for the complete GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not immediately released to the general public for issues of possible abuse, although OpenAI prepared to allow gain access to through a paid cloud API after a two-month totally free private beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed specifically to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has actually in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in private beta. [194] According to OpenAI, the design can develop working code in over a lots shows languages, the majority of efficiently in Python. [192]
Several issues with problems, style defects and security vulnerabilities were cited. [195] [196]
GitHub Copilot has been implicated of giving off copyrighted code, with no author attribution or license. [197]
OpenAI revealed that they would discontinue support for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They announced that the upgraded technology passed a simulated law school bar test with a rating around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could likewise check out, analyze or produce up to 25,000 words of text, and compose code in all major shows languages. [200]
Observers reported that the version of ChatGPT utilizing GPT-4 was an improvement on the previous GPT-3.5-based iteration, with the caution that GPT-4 retained a few of the problems with earlier modifications. [201] GPT-4 is likewise capable of taking images as input on ChatGPT. [202] OpenAI has declined to expose various technical details and statistics about GPT-4, such as the precise size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI revealed and released GPT-4o, which can process and produce text, images and audio. [204] GPT-4o attained advanced lead to voice, multilingual, and vision standards, setting brand-new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller variation of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be particularly helpful for business, startups and developers looking for to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI launched the o1-preview and wiki.whenparked.com o1-mini models, which have been developed to take more time to think of their responses, leading to greater accuracy. These models are especially reliable in science, coding, and reasoning jobs, and were made available to ChatGPT Plus and bytes-the-dust.com Staff member. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the successor of the o1 thinking design. OpenAI likewise unveiled o3-mini, a lighter and quicker version of OpenAI o3. As of December 21, 2024, this model is not available for public use. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, security and security scientists had the chance to obtain early access to these designs. [214] The design is called o3 rather than o2 to avoid confusion with telecoms services supplier O2. [215]
Deep research study

Deep research is a representative established by OpenAI, unveiled on February 2, 2025. It leverages the abilities of OpenAI's o3 model to perform substantial web browsing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to 30 minutes. [216] With searching and Python tools made it possible for, it reached a precision of 26.6 percent on HLE (Humanity's Last Exam) benchmark. [120]
Image category

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to examine the semantic resemblance in between text and images. It can notably be used for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer model that develops images from textual descriptions. [218] DALL-E uses a 12-billion-parameter variation of GPT-3 to analyze natural language inputs (such as "a green leather purse shaped like a pentagon" or "an isometric view of an unfortunate capybara") and create corresponding images. It can develop images of sensible objects ("a stained-glass window with an image of a blue strawberry") as well as things that do not exist in reality ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI revealed DALL-E 2, an upgraded variation of the model with more realistic results. [219] In December 2022, OpenAI released on GitHub software application for Point-E, a brand-new rudimentary system for transforming a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more effective design better able to create images from intricate descriptions without manual timely engineering and render intricate details like hands and text. [221] It was launched to the public as a ChatGPT Plus function in October. [222]
Text-to-video

Sora

Sora is a text-to-video design that can produce videos based upon brief detailed triggers [223] along with extend existing videos forwards or backwards in time. [224] It can produce videos with resolution as much as 1920x1080 or 1080x1920. The maximal length of created videos is unidentified.

Sora's development group called it after the Japanese word for "sky", to signify its "unlimited creative capacity". [223] Sora's innovation is an adjustment of the technology behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system using publicly-available videos as well as copyrighted videos licensed for that purpose, however did not expose the number or the specific sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the general public on February 15, 2024, mentioning that it might create videos up to one minute long. It likewise shared a technical report highlighting the approaches used to train the design, and the model's capabilities. [225] It acknowledged some of its shortcomings, consisting of struggles simulating intricate physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "excellent", however noted that they need to have been cherry-picked and may not represent Sora's typical output. [225]
Despite uncertainty from some academic leaders following Sora's public demo, noteworthy entertainment-industry figures have shown considerable interest in the innovation's capacity. In an interview, actor/filmmaker Tyler Perry revealed his awe at the innovation's ability to produce realistic video from text descriptions, citing its prospective to transform storytelling and material production. He said that his excitement about Sora's possibilities was so strong that he had chosen to stop briefly plans for broadening his Atlanta-based movie studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech acknowledgment design. [228] It is trained on a large dataset of varied audio and is likewise a multi-task design that can carry out multilingual speech acknowledgment along with speech translation and language recognition. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can produce songs with 10 instruments in 15 designs. According to The Verge, a tune produced by MuseNet tends to begin fairly but then fall under chaos the longer it plays. [230] [231] In pop culture, initial applications of this tool were used as early as 2020 for the web mental thriller Ben Drowned to develop music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a snippet of lyrics and outputs song samples. OpenAI stated the tunes "show local musical coherence [and] follow standard chord patterns" however acknowledged that the tunes lack "familiar larger musical structures such as choruses that duplicate" which "there is a substantial space" between Jukebox and human-generated music. The Verge mentioned "It's highly remarkable, even if the results seem like mushy versions of songs that might feel familiar", while Business Insider stated "surprisingly, a few of the resulting songs are appealing and sound genuine". [234] [235] [236]
Interface

Debate Game

In 2018, OpenAI launched the Debate Game, which teaches makers to discuss toy issues in front of a human judge. The function is to research study whether such a method may assist in auditing AI choices and in developing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every significant layer and nerve cell of eight neural network designs which are often studied in interpretability. [240] Microscope was developed to analyze the features that form inside these neural networks quickly. The models consisted of are AlexNet, VGG-19, different variations of Inception, and wiki.whenparked.com different variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an artificial intelligence tool built on top of GPT-3 that offers a conversational user interface that allows users to ask concerns in natural language. The system then responds with an answer within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: darrenmcclinto/mierzala#4